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1 INTRODUCTION

Microservice-based application architecture is an increasingly pop-
ular technique for building software, especially suited for frequent
releases, scaleable, and decentralized applications. The function
calls that connect each component of a monolithic application are
converted to network requests. This conversion allows modules
of an application to be implemented using different programming
languages, but it also creates chaos of network traffic inside an ap-
plication. This raises the concern of the reliability of a microserivce
application being shipped, because it is extremely difficult to ana-
lyze network flow and trace where the issue is unless developers
in code provide detailed logging and govern inter-service commu-
nication. This report provides the definition of reliability to better
understand this concern of microservice systems and discusses
aspects that improve their reliability. Although tracing and con-
trolling network traffic are achievable in the implementation, it
requires extra efforts during development. This report introduces
Istio, a service mesh, to observe and control the network communi-
cation within an application without requiring code changes. Next,
a detailed analysis is provided to show how Istio can improve mi-
croservice reliability along with a case study. Finally, we discuss
the limitation of Istio and service mesh.

2 RELIABILITY

In this section, we discuss the definition of software reliability in
both academic and the industry and demonstrate design patterns
of building more reliable microservices.

2.1 Definition

In academic research, software reliability (SR) is defined as “the
probability of failure-free software operation for a specified period
of time in a specified environment” [18]. Software failure is the
transition from correct service (i.e. with expected service responses)
to an incorrect service (i.e. failed requests or unexpected service
responses). Researchers build up models of software systems to
evaluate reliability. However, the models are platform-dependent,
and the main focus of this report is on microservice [14], so the relia-
bility models will be skipped. Apart from modeling, software testing
is the main approach to reliability assessment. For microservice,
since the software and the operational profile change continuously
due to the frequent releases, service upgrades, dynamic service
interactions, researchers also proposed a run-time testing method
to estimate the reliability of the microservice application, which
monitors the failure rate upon requests to a specific service instance
[21].

The term software availability (SA) is also used in research pa-
pers and blog posts, sometimes, interchangeably with SR. SA is a

description of SR from customers’ viewpoints, and it is defined as
"a software-intensive systems are available at a given time point,
under the specified environment" [29]. SA is also considered as “the
reliability for customers” or “the reliability with maintainability”
[29]. It is worth noting that the correctness of a request does not
reflect on SA. In other words, users are less anxious when their
banking website shows maintaining than a "page not found" error.
Both SA and SR only care about acknowledging software failures,
and correcting failures are tasks for developers. The industry often
uses SR when referring to SA, because a customer-oriented mea-
surement can better fit in their engineering goal. This report does
not distinguish the two terms.

In the industry, Google’s view on SR is an approach called Site
Reliability Engineering (SRE)', which is "a discipline that incor-
porates aspects of software engineering and applies them to in-
frastructure and operations problems” [30]. SRE assumes that in
nearly all systems there’s a very small (but nonzero) acceptable
quantity of unavailability. The system downtime can be thought
of as an error budget. As long as a system is down less than its
budget, it is considered healthy. For example, if a system is required
to be available 99.9% of the time. That means it’s acceptable for the
system to be unavailable 0.1% of the time (for any given 30-day
month, that is 43 minutes). Once you blow the error budget (99.9%),
however, you need to spend 100% of your engineering time writing
code that fixes the problem and generally makes your system more
stable [23]. In SRE, failure is no longer an unexpected event. This
is fundamentally different from SR definitions in academic where
the probability of a failure-free system is no longer important, and
yet the system downtime is all we care about. Furthermore, Google
defines SR as "a function of mean time to failure (MTTF) and mean
time to repair (MTTR)", so we only care how often we encounter
failure and how efficient the response team can resolve the failure
[7].
AWS? formally defines SR as "the percentage of time that an
application is operating normally", mathematically written as:

Awvailability = NormalOperationTime/TotalTime

For a given time period (i.e. Total Time), the status of the system is
flipping between available and unavailable (i.e. repairing). We can
estimate availability by calculating, the percentage of average sys-
tem available time in both average system available and unavailable
time. The normal operation time can be considered as the average
time between failures, We define MTBF to be Mean Time Between
Failure, then the estimation of availability can be described as:

AwvailabilityEstimate = MTBF /(MTBF + MTTR)

When a service depends on other services (e.g. dependency 1, depen-
dency 2, etc.), the availability is calculated to follow the probability

© 2020 Association for Computing Machinery.

The book [8] is highly recommended for all operation team.
2 Amazon Web Services



product rule (e.g. service * dependency 1 * dependency 2...). When
redundant components exist, however, the availability is generally
improved because the probabilities of all of the components going
down at the same time are lower. Given N instances of a component,
the availability is formally defined as:

N
Availability = 100% - ) AvailabilityOfN
i=1

Max Disruption

Availability (per year) Application Categories

99% 3 days 15 hours Batch processing, data extraction, transfer,
and load jobs

999% 8 hours 45 minutes  Internal tools like knowledge management,
project tracking

99.95% 4 hours 22 minutes ~ Online commerce, point of sale

99 99% 52 minutes Video delivery, broadcast systems

99,999% 5 minutes ATM transactions, telecommunications

systems

Figure 1: Common application availability design goals and
the possible length of interruptions that can occur within a
year while still meeting the goal from AWS [2]

For a software system to have good availability, AWS considers
that the system should have the ability to recover from infras-
tructure or service disruptions, dynamically acquire computing
resources to meet demand, and mitigate disruptions such as mis-
configurations or transient network issues [2].

To summarise, in academic, SR is evaluated by the probability
of a failure-free system, in other words, the prediction of future
failures is the key to evaluate SR. In the industry, the probability of
a single failure is ignored, and SR is evaluated by the availability
of the software system. Although the two measurement method-
ologies are different, they are two dimensions to SR. The higher
the probability is, the less unavailable the software system is. Note
that, the discussion above is not restricted to any specific software
design.

2.2 Design Principles of Reliable Microservice
Applications

The definition of reliability emphasizes on understanding and eval-
uating software reliability. However, in practice, people care about
how to determine whether a system is available, how to recover
from failures if a system becomes unavailable, how to improve
system resilience, and how to discover issues before deployment.

2.2.1 System Monitoring - Determine System Status. As men-
tioned earlier, SRE treats failures as expected events during opera-
tion, then discovering the failures and knowing the system status
becomes crucial, and for monitoring the application, SRE considers
the four golden signals that can answer basic questions about the
application [8]:

Traffic a measure of how much demand is being placed on the
system.

Errors requests failure rate, which can be explicit (e.g., HTTP
500s), implicit (for example, an HTTP 200 success response,
but coupled with the wrong content), or by policy (for ex-
ample, "If you committed to one-second response times, any
request over one second is an error").

Latency the time it takes to service a request. It’s important to
distinguish between the latency of successful requests and
the latency of failed requests. For example, an HTTP 500 er-
ror triggered due to loss of connection to a database or other
critical backend might be served very quickly; however, as an
HTTP 500 error indicates a failed request, factoring 500s into
the overall latency might result in misleading calculations.

Saturation how "full" your service is. A measure of your sys-
tem fraction, emphasizing the resources that are most con-
strained (e.g., in a memory-constrained system, show mem-
ory; in an I/O-constrained system, show I/O). Note that many
systems degrade in performance before they achieve 100%
utilization, so having a utilization target is essential.

Besides, it is also suggested to implement a health check API
to quickly validate the status of a service and its dependencies. In
other words, a health check API is a separate REST service that is
implemented within a microservice component that quickly returns
the operational status of the service and an indication of its ability
to connect to downstream dependent services [1].

2.2.2  Recovery-Oriented Computing - Recover from Failures. Re-
ducing MTTR is critical to improve software availability. There
exists a concept called Recovery-Oriented Computing, which em-
phasizes recovery from failures rather than failure-avoidance for a
software system [25]. It mainly focuses on the follow aspects:

Isolation and Redundancy the ability to isolate portions of
the system. Isolation is crucial for fault containment and safe
online recovery, and it naturally demands redundancy, as
redundancy allows continued service delivery while portions
of the system are isolated.

System-wide Support for Undo provides an undo facility that
covers all aspects of system operation, from system configu-
ration to application management to software and hardware
upgrades.

High Restartability and Modularity "Software aging" related
problems, such as memory arena corruption, very compli-
cated and difficult-to-reproduce timing-related concurrency
bugs, etc. are often best solved by a total or partial restart of
the affected components. In some cases, proactively restart-
ing components before they fail can improve overall availabil-
ity. Naturally, high restartability requires high modularity,
so we can restart seprate components instead of the whole
software system.

2.2.3  Fault Tolerant - Improve System Resilience. Designing ro-
bustness software architecture is the key to improve system re-
silience. There are several design patterns/principles suggested by
Microsoft Azure [3], AWS [2], and Microservice.io [19] to make the
system fault tolerant®:

3There are more design patterns available, but only listed the ones that are more
related to microservice



Retry enables an application to handle anticipated, temporary
failures when it tries to connect to a service by transparently
retrying an operation that’s previously failed.

Queue-Based Load Leveling the queue, which acts as a buffer
between a task and a service. It invokes decouples the tasks
from the service, and the service can handle the messages
at its own pace regardless of the volume of requests from
concurrent tasks.

Circuit Breaker prevents an application from performing an
operation that is likely to fail by automatically rejecting new
requests if the requests have exceeded the service capacity, so
it takes less time to encounter failures and allow the service
to cool down.

Bulkhead elements of an application are isolated into pools
so that if one fails, the others will continue to function.

2.24 Testing - Discover Issues Early. 1t is also suggested to use
automation to simulate different failures or to recreate scenarios
that led to failures before.

Canarying release refers to a partial and time-limited deployment
of a change in a service and the evaluation of this deployment.
Canarying allows the deployment pipeline to detect defects as
quickly as possible with as little impact to your service as possible.
The canary process also lets us gain confidence in the change as
we expose it to larger amounts of traffic. Introducing the change
to actual production traffic also enables to identify problems that
might not be visible in testing frameworks like unit testing or load
testing, which are often more artificial. When you catch system
defects early, users are minimally impacted. Canarying can also
provide confidence in frequent releases and improve reliability [8].

In complex systems, chaos engineering takes the approach that
regardless how encompassing your test suite is, once your code
is running on enough machines and reaches enough complexity
errors are going to happen [9], and chaos testing is then defined as
deliberately introduce errors to ensure your systems and processes
can deal with the failure. This is an important testing strategy to
ensure the simulation of failures to the system, and it is extremely
useful when assessing the Mean Time to Recovery (MTTR).

3 SERVICE MESH AND ISTIO

In this section, we explain service mesh, an architectural paradigm,
and how is it related to microservice architectures. Then, we intro-
duce Istio, an open-source project that delivers a service mesh to a
microservice application.

3.1 Service Mesh

Service instances of a microservice application communicate through
a network; service mesh handles these service-to-service communi-
cations to resolve the problems of connecting, securing, controlling,
and observing a mesh of services. Formally, the service mesh is
defined as an architectural paradigm that provides a transparent
and language-independent way to flexibly and easily automate mi-
croservice application network functions [11]. The transparent way
means that the application code base must not be affected by adding
in a service mesh and developers can safely ignore its existence.

The language-independent way means that a service mesh is inde-
pendent of service implementation. Therefore, a service mesh is
an infrastructure layer that is designed to handle the inter-service
communication of a microservice application.

Although the logic that governs inter-service communication can
be coded into each service without a service mesh layer, adopting
a service mesh allows the application to be decoupled from the
network stack and becomes beneficial as the application complexity
increases [22]. A service mesh focuses on helping the following
four aspects of a microservice application [11]:

Connect controls network traffic flow and application program
interface (API) calls between service instances. Some use-
ful features in this aspect including: load balancing, retries,
health check, canary releases, and circuit breaker.

Secure manages and secures communications between ser-
vices. These features include authentication, authorization,
and firewall.

Control applies user-defined policies (for example, routing,
rate limits, quotas) and enforces them across services.

Observe provides insights on performance and distributed traf-
fic flow. For example, improve visibility to monitor service
status and detailed logs to quickly identify issues.

As mentioned earlier, the service mesh is an architectural para-
digm, or in other words, an infrastructure design pattern. So, how
is a service mesh implemented? A service mesh is constructed with
two components:

Data Plane handles network traffic between service instances.
Typically, this is implemented through deploying a network
proxy, called a sidecar proxy”, alongside each service instance
[27]. The sidecar proxy intercepts and rules network traffic
flow coming in and out of a service instance, so developers
can focus on achieving service core logic without governing
inter-service communication. On the one hand, by analyz-
ing and tracing packets on the network layer, the sidecar
proxy improves microservice application observability and
traceability. On the other hand, by controlling requests to
a particular service instance, the sidecar proxy can prevent
service from overloading and easily respond to user-defined
network behaviors. Regardless of service implementation,
network communication will be the outcome upon a service
request, and the data plane only interacts with the network
stack. Hence, the data plane makes service mesh transparent
and language-independent of a microservice application.

Control Plane deploys user configuration and controls the
data plane’s behaviors. It usually provides an interface for
the user to configure the service mesh and manage network
traffic within the microservice application. Conceptually, the
control plane is the central unit that connects the user’s poli-
cies to sidecar proxy behaviors. It interprets and validates
each user-defined policy (e.g. retry policy), and synchronizes
the rules for all proxies as user specifying new policies dy-
namically. Additionally, when adopting a service mesh, the

4Some blogs [17] claim sidecar proxy is the data plane of service mesh



control plane is responsible for interacting with the underly-
ing infrastructure that the microservice application built on

[17].
CLI/API
Control
Plane Service Mesh Control Plane I I I
il l 1
Data Plane Observe

East-West Traffic

Figure 2: The control plane in a service mesh distributes con-
figuration across the sidecar proxies in the data plane [27]

To further illustrate the connections between the control plane
and the data plane, the control plane bootstraps a service instance
along with its sidecar proxy and constantly reports a global status
of service instances inside a microservice system. All the rules
that restricting sidecar proxies’ behaviors along with a credential
management system are kept inside the control plane. When the
user applies a policy, the control plane first validates the policy
against the system’s current configuration before deploying it, then
announces the rules to sidecar proxies to regulate their behaviors.
Although the data plane actually touches every packet, the control
plane empowers the sidecar proxies to become a distributed system
and makes service mesh valuable to complex microservice systems.

In summary, a service mesh is a dedicated infrastructure layer
built right into a microservice application, and the goal of using
a service mesh with your microservice system is better security,
more reliability, lower cost, scale, and better resiliency within a set
of closely intercommunicating systems [11].

3.2 Istio

Istio is an open-source application, initially developed by Google,
IBM and Lyft, that delivers service mesh to microservice applica-
tions. Currently, Istio is only usable with Kubernetes’. Because of
the nature of the service mesh, installing Istio does not require any
change to the existing code base.

A service mesh is constructed with two components, such as
Istio. Istio deploys Envoy proxies alongside each service instance
acting as the data plane®, and it implemented a set of components
acting as the control plane.
5Google claims Istio is designed to run in any environment on any cloud, and Kuber-
netes is the first step [28]

6 Although the majority of the articles regarding Istio considers Istio is a service mesh,

there is a classification [17] considering Istio is only the control plane of a service
mesh, just for the fact that Istio did not implement Envoy, its sidecar proxy. This report

The data plane, Envoy, is a Layer 7 proxy and a communication
bus designed for large service-oriented architectures [13]. A Layer
7 proxy operates at the high-level application layer, which deals
with the actual content of each packet. In other words, Layer 7
proxy can make a load-balancing decision based on the content of
the message (the URL or cookie, for example) [20].

The control plane is the core of Istio. As discussed in 3.1, the
responsibilities of the control plane: bootstrapping service instances
with their sidecars, parsing and validating user-defined policies,
announcing new rules and synchronizing rules to all sidecar proxies,
credential management, and authentication, and interacting with
the underlying infrastructure. Istio implements five components to
achieve these responsibilities [5]:

Galley centralized configuration management and distribution.
Galley insulates the rest of the Istio components from the
underlying platform (i.e. Kubernetes). Galley ingests user-
defined policies and validates them before distributing across
the application.

Pilot configures all the Envoy proxy instances deployed in the
Istio service mesh. It fetches configurations, for example,
timeouts, retries, and circuit breakers, from Galley for traf-
fic management, then pushes these configurations across
sidecar proxies.

Mixer authorization policy enforcement and telemetry collec-
tion. Before handling each request, the Envoy proxy calls
Mixer to perform precondition checks, then it decides whether
the request should be allowed (e.g. authenticated request).
During this process, telemetry is collected in Mixer for user
observation.

Citadel provides strong service-to-service and end-user au-
thentication using mTLS, with built-in identity and creden-
tial management.

Adapter connecting to a variety of infrastructure services,
such as metrics, and logs.

As described in 3.1, the service meshes aim to help with the four
aspects of a microservice application, we now discuss how Istio
achieves that goal [11]:

Connect Istio helps handle the flow of traffic and API calls between

services intelligently; its Envoy sidecar proxy provides load
balancing, retries, service health check, circuit breakers, and
canary releases feature for the microservice system. The
configurations are stored inside proxies and dynamically
configurable by the users.

Secure Istio secures communications between services through man-
aged authentication, authorization, and encryption, and The
Mixer and the Citadel are responsible for managing this. Each
service has an identity asserted by an X.509 certificate that is
automatically provisioned and used to implement two-way
(mutual) Transport Level Security (TLS) for authorization
and encryption of all API exchanges.

Control applies user-defined policies (for example, routing, rate lim-
its) and enforces them across services. Inbound and outbound

considers Istio to be a service mesh, as discussed earlier, the control plane makes
service mesh valuable.
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Figure 3: Istio Architecture from Google [11]

communications are controlled, including requests that go
to external systems. Users can dynamically update the con-
figurations, and the Galley and the Pilot are responsible for
distributing the changes across the Envoy proxies.

Observe Istio ensures visibility with automatic tracing and opera-
tional logging of services. Mixer will collect telemetry of
each request, and metrics visualization tools like Grafana
and request tracing tools like Zipkin are supported in Istio.

4 ISTIO AND MICROSERVICE RELIABILITY

Istio is an excellent infrastructure layer that manages microservices
without touching the existing code base. Recall that we defined
four design patterns that can improve microservice reliability; we
now discuss how Istio’s features can help build a more reliable
microservice-based application.

4.1 System Monitoring

Istio ensures visibility with automatic tracing and operational log-
ging of services. It provides insights on performance (using Grafana)
and distributed traffic flow (using Faeger). It also offers visibility to
monitor service status and detailed logs to quickly identify issues.
Istio’s sidecar proxies provide health check APIs to monitor service
status and maintain service reliability.

Recall in 2.2.1, SRE suggested the four golden signals indicating
system status. Istio automatically gathers latency, errors, and traffic
for any microservice system. Saturation is different for every service,
so Istio is unable to provide metrics for that signal [8].

4.2 Recovery-Oriented Computing

Unfortunately, Istio does not contribute to recovery-oriented com-
puting. Service mesh only acts on the network layer of the ap-
plication. Therefore, Istio cannot control service replication and
system-wide recoverability, and these are parts of the infrastruc-
ture’s responsibilities (i.e. Kubernetes).

Latency

Errors

Traffic

Figure 4: The four golden signals [8]

4.3 Fault Tolerant

Istio provides the following features to build resilient and fault
tolerant software [26] [6]:

Circuit Breakers when we apply a circuit breaker to an en-
tity, and if failures reach a certain threshold, subsequent
calls to that entity should automatically fail without apply-
ing additional pressure on the failed entity and paying for
communication costs. It’s nearly always better to fail quickly
and apply back-pressure downstream as soon as possible.
Envoy enforces circuit-breaking limits at the network level,
as opposed to having to configure and code each application
independently.

Control Connection Pool and Request Load Istio can also be
used to specify maximum active connections to a microser-
vice or maximum pending requests. We can set destination
microservice maximum connections to X and maximum
pending requests to Y. Thus, if we sent more than X+Y re-
quests at once to the microservice, it will have Y pending
requests and deny any additional requests until the pending
requests are processed.

Health Checks Istio can perform health checks against a load-
balancing pool. A microservice in a load-balancing pool can
have multiple deployed instances, and Istio distributes traffic
across those instances. If some of those instances are broken,
Istio can perform health checks and eject any broken instance
in your load-balancing pool to avoid any further failure.

Retries/Timeouts Istio allows you to create route rules for
your destination microservices where you can specify the
timeout and retry policies. For example, you can create a
routing rule if your microservice does not respond within
n seconds. Once applied, this rule will time out all the re-
sponses that take more than n seconds in the destination
service. You also can apply the retries rule by telling Istio
how many retries you want if a particular microservices is
not reachable and what the timeout should be for your retry.



So if at first attempt, your destination microservice is not
reachable in n seconds, you can tell Istio to do m number of
retries and also increase the timeout for retries beyond n.

4.4 Testing

Istio enables the system to perform chaos testing and canarying
releases.

4.4.1 Canarying Releases. In 2.2.4, SRE suggests using canary-
ing releases can improve service reliability. Basically, canarying
releases mean to introduce a new version of service by first testing
it using a small percentage of user traffic, and then if all goes well,
increase, possibly gradually in increments, the percentage while
simultaneously phasing out the old version. The Istio routing rules
can be used to route traffic based on specific criteria. Istio provides
the control necessary to manage traffic distribution with complete
independence from deployment scaling [10].

4.4.2 Chaos Testing. Istio provides a valuable feature called
fault injection. With this feature, failures can be injected at the
application layer like HTTP Errors or Delays to test the resiliency
of the application. You can configure faults to be injected into
requests that match specific conditions. You can inject either delays
or faults into the requests. This will mimic service failures and
latency between service calls [4].

5 CASE STUDY

We performed a case study on an Istio demo project [12] to demon-
strate reliability improvements after installing Istio. Recall that
request failures in a software system are random and expected, and
software reliability is an evaluation of overall available time (i.e.
MTTF Mean Time to Failure and MTTR Mean Time to Repair) of
the application during a certain period. Hence, the selected demo
project focuses on simulating real deployment environment and
transient network issues. Because MTTR is an operation team-
specific measurement that this report is unable to evaluate, the
case study only uses random failures to simulate MTTF and applies
retry policies to demonstrate network resiliency improvement of
the application.

The demo project does not provide actual functionalities, and
it directly replies a request with one of the three status codes,
200, 400, and 500. The server implementation is set to rejects a
request at a 25 percent chance, and the rejected request status
code is set randomly to 400 or 500. Ideally, 75 percent of the total
requests will be responded with 200, and in the failed requests, half
of them will be 500 and the other half will be 400. After constantly
sending requests to the server for 1 hour, as we can observe from
the Grafana charts, the success rate matches our expectations, and
this implementation is certainly not a reliable software.

In the previous stage, Istio has already been installed without
any traffic management configuration. The reason is that it is im-
possible to learn system status if the application does not explicitly
collect service metrics. Without monitoring the application, the
operation team cannot answer the four golden signals of the system,
so it is hard to react to failure if the failure is not alerting anyone.
With Istio, however, network traffic flow is automatically collected
regardless of service implementation, and the Grafana dashboard

can automatically query system status to answer the question of
service latency, request errors, and network traffics.

Because we consider the system failure as random and potential
transient network issues, we apply the retry policies to evaluate
overall system availability. For each request, sidecar proxies will
retry three times before rejecting it. By observing the Grafana chart,
the global success rate is greatly improved. Also observe that the
latency of each request becomes higher than before (i.e. P50 Latency,
P90 Latency, and P99 Latency in 5), and that is because, on average,
retrying requires more time to respond to a request. This is the
trade-offs between service availability and its performance.

6 CRITICISMS OF ISTIO

Despite its attractive features and reliability improvements, Istio re-
lies on certain infrastructure setup’. Typical concern regarding Istio
and service meshes is their performance impacts on the application.
Adopting sidecar proxies cost extra computation resources®,
which is crucial especially when company budget restricts available
computation power (e.g. deploying the application on Google Cloud
Platform). Latency is also an important aspect to consider. Istio
introduces latency for each request because the network flow is
handled by sidecar proxies injected into each service instance.
Here is the performance summary of Istio 1.4.2 [15]:

e The Envoy proxy uses 0.5 vCPU and 50 MB memory per
1000 requests per second going through the proxy.

o The istio-telemetry service uses 0.6 vCPU per 1000 mesh-
wide requests per second.

e Pilot uses 1 vCPU and 1.5 GB of memory.

e The Envoy proxy adds 6.3 ms to the 90th percentile latency.

7 CONCLUSIONS

This report discussed definitions of software reliability and princi-
ples that help to build a reliable microservice, then it introduced
service mesh, an architectural paradigm, that helps to manage the
network layer of the microservice application along with Istio, an
application that delivers service mesh. Finally, the report analyzed
how Istio improves software reliability by providing observability
and improving network resiliency and its limitations and perfor-
mance impacts.

Despite the apparent popularity of Istio, there are other service
meshes exist in practice, for example, Linkerd. Future studies could
focus on comparing the implementation trade-offs between differ-
ent service mesh and their performance. As for software reliability,
the service mesh is only a small portion of microservice architec-
ture, so future studies could focus on other paradigms that improve
microservice reliability to form a coherent reliable microservice
architecture model.
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